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1. Introduction

In generating the lift on a wing, the static stall is a severe barrier. As the angle

of attack, o, increases to the stall angle, astall, the flow separation point on the upper

surface of the wing moves to the leading edge, so that on a two-dimensional airfoil or a

large-aspect-ratio wing, the lift abruptly drops to a very low level. Therefore, the first

generation of aeronautical flow type, i.e., the attached steady flow, has been limited to

O_ < Otsta] ].

Owing to the obvious importance in applications, therefore, a great effort has been

made in the past two decades to enlarge the range of usable angles of attack by various flow

controls for a large-aspect-ratio wing. Basically, relevant works fall into two categories. The

first category is usually refereed to as separation control, which concentrates on partially

separated flow at a < ast_n. Since the first experimental study of Collins and Zelenevitz

(1975), there has been ample literature showing that a partially separated flow can be

turned to almost fully attached by flow controls, so that the lift is recovered and the stall is

delayed (for a recent work see Seifert et al. 1993). It has been well established that, in this

category, unsteady controls are much more effective than steady ones and can be realized

at a very low power-input level (Wu et al. 1991; Seifert et al. 1993).

The second and more ambitious category of relevant efforts is the post-stall lift en-

hancement. Its possibility roots at the existence of a second lift peak at a very high angle of

attack. In fact, As a further increases from astan, the completely separated flow develops

and gradually becomes a bluff-body flow. This flow gives a normal force to the airfoil with

a lift component, which reaches a peak at a maximum utilizable angle of attack, am - 40 °.

This second peak is of the same level as the first lift peak at ast,n. Meanwhile, the drag is

also quickly increased (e.g., Fate and Johansen 1927; Critzos et al. 1955). Figure 1 shows

a typical experimental lift and drag coefficients of NACA-0012 airfoil in this whole range

of angle of attack.

Obviously, without overcoming the lift crisis at astfll, the second lift peak is completely

useless. Thus, the ultimate goal of post-stall lift enhancement is to fill the lift valley

after stall by flow controls, so that a wing and/or flap can work at the whole range of

0 ° < a < am. Relevant early experimental studies have been extensively reviewed by Wu

et al. (1991), who concluded that, first, similar to the leading-edge vortex on a slender

wing, the lift enhancement on a large-aspect-ratio wing should be the result of capturing

a vortex on the upper surface of the wing; and, second, using steady controls cannot reach

the goal, and one must rely on unsteady controls with low-level power input as well. Wu

et al. (1991) also conjectured that the underlying physics of post-stall lift enhancement by

unsteady controls consists of a chain of mechanisms: vortez layer instability - receptivity -

resonance - nonlinear streaming.
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Experimental studies by Hsiao's group (Hsiao et al. 1990, 1993, 1994; Chang et

al. 1992) using a NACA 63a-018 airfoil, and Zhou and Fernholz (Zhou et al. 1993) us-

ing a NACA-0025 airfoil (with sharp edge forward), confirmed the above basic ideas. In

a range of post-stall angle of attack till about 35 °, a local unsteady excitation (acoustic

and/or oscillating flap) near leading edge may increase the lift by 40 % to 70 %, and the

lift/drag ratio can be increased up to 80% at a moderate a. The possibility of capturing

a vortex by unsteady control was also confirmed analytically by Chernyshenko (1995). He

used a simple theoretical model to prove that while a vortex above a circular cylinder in

an oncoming flow is unstable and must run away, it can be stabilized and captured in the

mean sense by a two-point alternative blowing-suction.

In spite of these positive progresses, a full understanding of the wing flow at a post-

stall angle of attack and its control is still lacking due to the well-known complexity of such

flows. Shear layers shed from both leading and trailing edges of the wing, rolling up into

mutually interacting vortices. The secondary and tertiary separations from the mid portion

of upper surface may also be induced. All these make the flow field inherently unsteady,

and no such a simple theory as the classic linear aerodynamics for steady attached flow is

possible. Therefore, a full clarification of the mechanisms of post-stall lift enhancement by

unsteady controls is highly desired, which heavily relies on careful numerical simulations

and detailed experimental flow-field surveys.

Motivated by the above need and supported by NASA Langley Research Center under

the Grant NAG-l-1612 (1994-1996), we carried out a series of two-dimensional Navier-

Stokes computation of a post-stall turbulent flow over an airfoil and its unsteady control.

The purpose of the stud?, was twofold: to reproduce computationally the lift-drag charac-

teristics of uncontrolled and controlled flows, and using the detailed flow-field data base to

further clarify the physical mechanisms therein. The results will be outlined in the next

section. The?, confirmed the above experimental discovery qualitatively, and did lead to a

deeper physical understanding.

These recent experimental and computational progresses open a new avenue to pass

through the barrier of static stall of classic wings, so that a wing or a flap with proper

built-in unsteady control devices could enjoy a sufficient lift well beyond the stall till a

much higher angle of attack. We believe that, after some further study, this post-stall flow

control technique can be applied to the industrial designs within a few years. In particular,

it can be immediately used to increase the function of a flap system in landing, so that a

reduction of its size and an increase of its working angle of attack are possible.

This report consists of the following contents. Section 2 discusses the basic physics

relevant to the project. In Section 3 we present our numerical approach, and in Section 4,

the results and discussion. Some brief concluding remarks are made in Section 5.
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2. Physical Background of Post-Stall Flow Control

We first discuss the basic physical mechanisms behind the post-stall flow control,

which provided a guidance to our computation.

2.1. The Vortical Source of Post-Stall Lift and Drag

It is well known that, at least at low Mach numbers, the lift (and drag) on a wing

is entirely from the generated vorticity in asymmetric boundary layers on the upper and

lower surfaces of the wing through the viscosity and no-slip condition. Recently, Wu and

Wu (1996) re-emphasized this vortical source of aerodynamic force by explicitly putting

the Kutta-Joukowski lift formula (a counterclockwise circulation F is assumed positive)

L = -pur (1)

and its three-dimensional extension on the basis of viscous rotational flow theory. Wu

and Wu show that these formulas hold if the flow is incompressible and steady, and if the

Reynolds number approaches infinity (i.e., the EuIer limit of Navier-Stokes flow).

For high Reynolds-number attached flow, the circulation F in (1) is well predicted by

classic potential-flow theory. In contrast, in a fully separated unsteady flow which is our

concern, although the favorable circulation in upper-surface boundary layer is mostly lost,

Eq. (1) should still hold in a time-averaged sense if the mean F of the whole flow field

can be properly estimated. This is however not an easy task. In the Kirchhoff-Rayleigh

theory (Lamb 1932, §77), the circulation in (1) already exists implicitly, because the free

streamlines shed from the leading and trailing edges of an inclined flat plate are nothing

but vortex sheets, or the Euler limit of shear layers. This pair of vortex sheets are of the

same strength but the upper one is longer, and hence a net lift. But, the theory assumes

that the lee-side pressure takes the undisturbed value, which results in an underestimate

of the normal force. Roshko (1954a,b) showed that the Kirchhoff-Rayleigh theory can be

modified to fit well the flat-plate experimental result of Fage and Johansen (1927), if the

lee-side pressure is reduced to a more negative value by introducing a single empirically

determined constant. Similar result was obtained by Wick (1954). The physical implication

of this empirical correction to the Kirchhoff-Rayleigh theory can be made clear from the

following observation.

In Kirchhoff's theory, the free streamlines or vortex sheets do not roll into concentrated

vortices. In reality, however, the Kirchhoff flow is impossible under the Euler limit. Once

the airfoil starts to move at a post-stall angle of attack, the separated vortex sheets must

immediately roll up at their ends, which is essentially the most common mechanism of the

quick formation of concentrated vortices in a fluid of small viscosity (Betz 1950). Thus, the

vortex sheets can never have a chance to extend to infinity as assumed in Kirchhoff's theory.

After the vortex sheets roll into concentrated vortices, they must carry more circulation

above a wing than open sheets (Wu and Wu 1992), and produce a higher normal force than
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that predicted by the Kirchhoff-Rayleigh theory. In other words, the difference between

Kirchhoff and Rayleigh's theoretical prediction and experimental value of the normal force

is a measure of the net contribution of vortex-sheet rolling up.

It is of interest to notice that, without appealing to any separated-flow model, a

simple-minded consideration can already capture most part of the experimental lift and

drag of Fig. 1. Assume the oncoming flow with momentum pU directly hits the airfoil of

chord length c such that, to satisfy the no-through condition on the wall, its entire normal

momentum is transferred to the normal force N acted on the airfoil at a rate U. This gives

N -2 KpU2csina,

where the proportional coefficient K can be fixed as 1.2 based on the fiat-plate experiment

of Fate and Johansen (1927). Thus, the lift and drag coefficients are estimated by

Cz -2 1.2 sin 2c_, Cd "" 2.4 sin 2 a, (2a, b)

as also plotted in Fig. 1. The agreement with experiment is surprisingly good in most

part of post-stall angles of attack; the main deviation in both C, and Ca occurring only in

the regime of attached flow. Obviously, from the aerodynamic-efficiency point of view, the

optimal use of vortical force is in this regime of attached flow, where Cd is so low that one

can enjoy a very high lift/drag ratio of O(102). On the other hand, the fitting of Eq. (2a,b)

with experimental data indicates that they may roughly cover the contribution of rolled-up

vortices, including the streaming effect. Due to the simple trigonometry relation between

lift and drag, the lift/drag ratio for fully separated flow at high a inevitably reduces to

O(1). Note that the peak Ct of the airfoil (_2 1.15) is slightly overestimated by taking

K = 1.2, and this geometry-dependent difference could be due to the fact that a shear

layer shed from a sharp edge (as in the fiat-plate case) will form a stronger vortex than

that from a smooth surface, as is well known on slender wings. This was also why in the

experiment of Zhou and Fernholz (Zhou at al. 1993) the airfoil was reversely installed.

Figure 1 here ]

From the above simple observation, one may already learn something important in

the post-stall flow control. First, one should enhance the rolling up of leading-edge shear

layer (Wu and Wu 1992), such that its total length (and circulation) above the wing is even

larger than the attached boundary layer. This implies that the control should promote

the discretization of this layer into individual vortices, and their merging. If possible, the

leading edge should be made sharp.

Second, since kinematically the total circulation (including that carried away by wake

vortices) in the flow field must be zero, the formation of unfavorable trailing vortex is
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inevitable. But, what onecould do through control is to suppressthe rolling up of trailing-
edgeshearlayer and/or push the trailing vortex downstream.

2.2. Unforced Randomness vs Forced Resonance in Separated Flow

We now examine the specific dominating mechanisms involved in the post-stall flow

control. Obviously, two major mechanisms must play an essential role in a fully separated

flow field: the local instability of separated shear layers from both leading and trailing

edges, and the global instability that causes vortex shedding. While our understanding of

controlling the former can be greatly benefited from the studies of forced mixing-layers

(e.g., Ho and Huerre 1984), that of the latter is benefited from the studies of forced

cylinder-wake flows (e.g., Rockwell 1990).

2.2.1. Unforced Sepa.ated Flow

The dimensionless shear-layer frequency is defined as

lshearO l (u1 + u2), (3)
Stshear = _- ,

where 0 is the momentum thickness of the layer and U1 and U2 the velocities at its two

edges. An unforced straight shear layer is unstable if 0 _< Stsh_ar <_ 0.08 (Ho and Hurre

1984). For different [;1 and U2, the most unstable mode always occurs when Stshear _-- 0.032

if the flow is laminar, see Fig. 2; and Stsh_ar _-- 0.044 - 0.048 if the flow is turbulent (Ho

and Huerre, ibid). This most unstable frequency is referred to as the natural frequency and

denoted bv f.0 Note that since 0 is a increasing function of the streamwise distance- shear'

from the separation point, say s; hence, f0_he_ must be a decreasing function of s.

Figure 2 here I

On the other hand, the global instability that causes vortex shedding is the result of a

sufficiently large zone of absolute instability (e.g., Huerre and Monkewitz 1990), which, once

occurs, implies that perturbations will propagate both upstream and downstream. There-

fore, owing to the coexistence of a variable f°he_r and a natural shedding frequency f°h_ a

between the leading shear layer and trailing vortices, plus the fluctuating frequencies of

secondary and tertiary separations, the unforced separated flow must be a multi-frequency

system, in which the shear-layer evolution and vortex shedding process are already coupled

with and modulate each other. Because three frequencies that are not mutually integer

times of each other imply chaos, the random behavior of unforced separated flow is in-

evitable.
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2.2.2. Forced Shear Layer

As is well known, for a forced shear layer, the key parameter is the forcing frequency

re. The response frequency of the shear layer, f/hear, may differ from f°hear but is shifted to

a subharmornic of re. Under this f/hear, the shear layer rolls into discrete vortices, which

then merge into larger ones with the characteristic frequency correspondingly reduced.

This process will promote the merging and enhance the entrainment. Such a subharmonic

resonance and frequency lock-in are known to be the basic mechanism for effective shear-

layer control, which always leads to a more regularized flow field than non-resonant case.

In addition, a forcing at very low frequency of O(10-1fOhear) and a finite amplitude

may cause the so-called "collective interaction" (Ho and Nosseir 1981; Ho and Huang

1982) or "forced fusion" (Rockwell 1972), in which a coalescence of many small vortices

into a large one occurs within a short distance. Unal and Rockwell (1988) have proposed

that this mechanism be responsible to the vortex formation from separated shear layers

in a bluff-body flow. This could also be especially valuable for our purpose, because the

length scale of a fully separated flow is usually not large enough for the formation of a large

lifting vortex merely from successive pairings. On the other hand, unlike the straight shear

layer appearing in the experiments of Ho et al. and Rockwell, above an airfoil the leading

shear layer has a natural tendency to turn down and roll up. This makes the multi-vortex

coalescence easier to occur under proper control. Because there is no absolute distinction

between a perturbed shear layer and its discrete version, in what follows we shall call this

phenomenon the rolling-up coalescence.

2.2.3. Forced Vortex Shedding and Unsteady Control

After the controlled leading-edge shear layer is quickly discretized and a strong lifting

vortex is formed by merging, the lifting vortex will interact with trailing vortices just like

a bluff-body flow. Here we also have the frequency lock-in phenomenon, where the natural

shedding frequency shifts to a harmonic of fe (e.g., Stansby 1976). It is therefore possible

to find a proper range of fe so that the leading and trailing vortices are both effectively

modulated by a single forcing. Moreover, since disturbances can propagate both upstream

and downstream in absolutely unstable zone, we have a natural mechanism to close the

loop of resonance. In such a resonant flow the unfavorable random modes are suppressed,

making the retained main modes very regular and strong.

From the above discussions it is clear that, unlike the wake control of a circular-

cylinder flow, say, we now have to pay more attention to the flow field above the airfoil.

In particular, the focus must be on the control of leading-edge shear layer. Its upstream

location and high receptivity, as well as the fact that it is the only source of lift, make

the leading-edge shear layer the most effective constituent to control. Correspondingly, in

post-stall lift enhancement the imposed control must be asymmetric relative to the airfoil

configuration, as seen from the above-mentioned experiments with a single leading-edge
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control device. In this way, not only the enhancementof a time-averaged normal force

(which is the drag in bluff-body flows with symmetric geometry and forcing), but also that

of a time-averaged lift, can be achieved.

2.3. Other Factors in Unsteady Control

Except for frequency, some other factors may affect the resonance and flow patterns.

2.3.1. Forcing Amplitude

Under an upper bound, the increase of amplitude of forcing has a positive effect on the

increase of lift. In particular, if the lifting vortex is to be formed through the "rolling-up

coalescence" of small vortices, a sufficient amplitude is necessary to shift the small vortices

away from their mean position. The amplitude is easily controlled either experimentally

(Chang et al. 1992) or numerically. The forcing amplitude should be optimized from a

compromise between the desired lift increase and the power input.

2.3.2. Phase Velocity

For two modes to be in a resonant state, in addition to the frequency condition (sub-

harmonic), their phase velocity must be the same, which is difficult to control. Fortunately,

as seen from Fig. 3, for the shear layer this naturally happens when Stshear defined by (3)

is between 0.032 and 0.08. Thus, a forcing at Stshear = 0.04 will cause a resonance with

the mode of Stshear = 0.08.

Figure 3 here ]

2.3.3. Phase Angle

Ho and Huerre (1984) remarked that the phase angle, say _, of the basic and subhar-

monic modes also has important influence on the vortex-pairing process. The best case is

fl = 0, and the worst one is 3 = 7r: the latter will reduce the subharmonic growth rate by

30%. To ensure the mode interaction be in phase needs a local close-loop control, which

could be achieved only by using micro-sensor_ and micro-actuators. Note that the phase

problem is more complicated on a wing than a simple mixing layer -- the former involves

the phase of vortex shedding process as well. Note that if the rolling-up coalescence is to

be promoted, the detailed evolution of leading-edge shear layer, including its frequency,

phase velocity, and phase angle, become immaterial (Ho and Nossier 1981). A reduction

of relevant factors is therefore possible, and the control problem is simplified.

2.3.4. Wing Configuration

The airfoil configuration certainly has a crucial effect on the unforced and forced flow

pattern. Wu and Wu (1992) stressed that most design criteria of the common airfoils to
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be used in attached-flow regime is no longer meaningful. As mentioned before, a sharp

leading edge may produce a stronger favorable vortex. In addition, since a sharp edge

fixes the separation point, it is expected that such an edge will ensure a good spanwise

correlation, verb' important in three-dimensional flow control. Then, the shape of upper

surface determines whether the captured vortex can move comfortably, and whether the

secondary separation can be easily alleviated. Moreover, if the length scale of the airfoil

can match the wave length of discrete vortices, better control effect could be expected.

Finally, some unusual trailing-edge shape could be invented to alleviate the unfavorable

influence of trailing vortices.

_.3.5. Reynolds Number

The Reynolds number based on chord length (Rec) or the cross-flow length scale of

the body (Red for a cylinder; Recross = Rec sin a for an airfoil) has a significant effect

on the transition position, and hence also on vortex shedding frequency, base pressure,

and force coefficient (Roshko 1961; Jones et al. 1969; Giiven et al. 1980; Oertel 1990;

Williamson 1996). For a cylinder flow, as Red increases, several distinct regimes exist as

shown in Fig. 4 (Williamson 1996). In the figure, A - J denote different regimes, from

laminar steady flow regime to boundary-layer transition regime. Our concern is mainly in

the regimes E - J (critical, supercritical, and post-critical regimes). In the E - H range,

due to the delay of turbulent separation and narrowing of turbulent wake, there is a sharp

drop of base suction and drag. This behavior indicates that great care must also be taken

for the post-stall airfoil flow in these Reynolds numbers.

Figure 4 here j

In particular, the narrowing of turbulent wake may result in attached turbulent wake

vortices without shedding, at least in the mean sense. Because our control means is

designed for generically unsteady flow with vortex shedding, in the critical regime of airfoil

flow the unsteady control may not be necessary or effective.

Unfortunately, in contrast to the cylinder flow, it is very difficult to determine the

quantitative dependence of the post-stall airfoil-flow pattern on the Reynolds number. Here

the airfoil geometry and angle of attack must also be involved. For example, from practical

point of view, Rec should be no less than 2 x 106 (Wlezien 1996, private communication).

At a = 25 °, say, this gives Rec,oss = 8.5 x 105, which may just fall into the critical regime.

Rumsey et al. (1987) have found asymptotically steady numerical solution for a turbulent

flow over NACA-0012 airfoil at a = 25 ° and Rec = 1.3 x 106 (Recro_ = 0.55 x 105).

A systematic exploration of the dependence of post-stall flow pattern on the Reynolds

number should be one of the key issues in our future study.
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3. Numerical Method

Our numerical study has confirmed many of the above physical observations. The

method and results are presented in this and next sections. Due to the limitation of budget

and computer resources, some important factors affecting the control has not studied and

should be pursued in the future.

3.1. Numerical Scheme

A compressible Navier-Stokes solver, VNS, was adapted to the present problem. The

scheme is approximate factorized, using second-order central differencing in space plus a

fourth-order artificial viscosity, and is of second-order implicit in time. The code has been

"confirmed to work well at low Mach numbers by several test cases, including stationary and

oscillating airfoil flows, as well as flow over circular cylinder with vortex shedding. An O-

grid was used with 141 x 181 (circumferencial x normal) meshes. The grid was stretched

such that the mesh height adjacent to the wall is less than 10 -4. The computational

domain has a radius of 12 chord length, which was proved sufficient by numerical tests.

To check the resolution, a denser grid was used to compute a typical case for both

unforced and forced flows. The result was almost the same as the 141 x 181 grid, the

only difference being the detailed phase of chaotic force fluctuation. Thus, the grid-size

independence of the computation was confirmed.

As stated before, Rec should be no less than 2 x 106. The computational resource

available to us does not allow for a direct numerical simulation or large-eddy simulation;

thus, a Raynolds-average with some turbulence model is necessary. The choice of turbu-

lence model has very strong effect on the numerical results. In a computation of dynamic

stall, a comparative study of an algebraic model (Baldwin and Lomax 1978), an one-

equation model (Spalart and Allmaras 1992), and the k-e model has been made by Ko

and McCroskey (1995), who concluded that the Spalart-Allmaras model seems to be the

best. Various near-wall damping functions were compared by Patel et al. (1985). Because

detailed benchmark experimental data are not available for the range of angles of attack we

are studying, it is difficult to decide the model effect. For simplicity, the Baldwin-Lomax

model was used, along with the Launder-Sharma (1974) wall-damping function. The B-L

model is known to overestimate the lift for separated flow (Ko and McCroskey 1995), which

was also observed in our computation.

The computation would be much more complicated if it is to faithfully simulate an

oscillating flap, where a moving grid has to be imbedded in a fixed global grid. Such a

computation is being undertaken and will be reported elsewhere. In the present study

we used a local periodic blowing-suction at 2.5% chord length from the leading edge, to

mimic the effect of forcing. This location has been shown by the experiments of Hsiao et

al. (cited in § 1) to be most effective over a wide range of angle of attack.
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The adherence condition on airfoil surface is imposed except a few grid points in the

blowing-suction location. A non-reflectional condition (Thompson 1990) is imposed on the

outer boundary of the computational domain. The initial condition is simply taken as a

uniform flow. After starting, the transient state evolves to a quasi-periodic state. All the

data were drawn after the quasi-periodic state was reached.

3.2. Parameters

In the experiments of Hsiao's group (see the references cited before), it was reported

that the forcing frequency was chosen as the shear-layer frequency f0 for lower post-shear

stall a, and the natural shedding frequency f0 for higher o/. However, because O andshed

U vary along a streamline, and because above an airfoil the separated shear layer is no

longer straight and there can be secondary and tertiary separations, the natural frequency

Z°shea, can hardly be identified (Hsiao et al. did not explain how the shear-layer frequency

was detected). If 0f_hear was referred to the initial frequency at separation point, it could

not be the best choice. In contrast, in the experiment of Zhou and Fernhotz (Zhou et

al. 1993) it was found that the optimal effect occurred when fe was the first and second

superharmonics of fshed. Because the natural vortex-shedding frequency can be accurately

determined by computation or experiment., it is much more convenient to use f0shed as a

reference in choosing our fe. We thus define a relative forcing frequency

/o , (4)
shed

and for most runs we chose

._ = 2 j, j = O, +1,-t-2, ..., (5)

such that the imposed fe can effectively modulate the vortex shedding process. As ad-

dressed before, due to the same variable feature of fOhear , in a range of angles of attack it

is possible that )_ given by (5) also falls into a proper range that can promote the vortex

discretization in the shear layer or their merging.

The choice of Reynolds number was more complex. On one hand, as discussed in

§ 2.3.5, we need to work on as high Rec as possible but avoiding the critical regime. On

the other hand, as Rec increases, more small-scale vortices will appear, so that the flow

will tend to be more chaotic and take more time to reach a quasi-periodic state. Our

preliminary numerical tests confirmed this trend. To save computer time, therefore, we

chose Rec = 5 x 10 _, i.e., Recross = 2.1 x 105. This is of the same order as those in the

experimental studies cited above (up to 6.7 x 105, Zhou et al. 1993) and in the computation

of Ko and McCroskey (1995), which was 6 x 105. Note that a circular-cylinder flow at this

Re is in subcritical regime.
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The Mach number was fixed at 0.2. Along with Rec = 5 x 105, this implies that the

computed airfoil model has a chord length c = 11 cm (a larger Mach number implies a

smaller c).

The airfoil for computation was NACA 0012, since its uncontrolled force character

over the whole range of 0 ° __<cr __<360 ° has been extensively studied by careful experiments

(Critzos et al. 1955; Fig. 1 above). But, this is certainly not the optimal shape for post-stall

control purpose.

The periodic blowing-suction was simulated over five grid points of total length l to

form a velocity profile v(s). The flow rate, defined by

Ivl=axz (6)
c_, - Uc sin a'

is fixed to 2.5e_, which at a = 25 ° corresponds to Ivl=ax/U _- 0.42. Introducing the

factor sina is to ensure that with the same c_, a higher a requires a larger [vlm_,x/U as

it should be. Tests case at cr = 25 o showed that below c, = 1.0% the forcing effect is

almost negligible. It should be stressed that, the required c_, may well be reduced by using

a smaller l (for that case a denser grid would be needed) while keeping the same Ivlm  .
We believe that it is not the nominal c_, but mazimum disturbance velocity, Ivlm x/U, that

is crucial for the control (Chang et al. 1992).

The computation was carried out on a Cray-C90 supercomputer. Each run took

about 1 ,,_ 2 hours of CPU time. In the computation, the angle of attack was taken at

18 ¢. 20 °, 25 °, 30 °, and 35 °. Based on (3), a selective set of values of forcing frequency,

fe = 0.0, 0.5, 1.0, 2.0, and 4.0, was first tested at a = 25 °. Then the most effective values of

fe were tested for other a. The output data include: instantaneous Ct, Ca and associated

power spectra; their time average; instantaneous and time-averaged vorticity contours; the

time-averaged pressure distribution and streamlines.

4. Results and Discussion

We now present the resulting change of forces and flow patterns due to forcing. We

concentrate on the lift and drag first, which is the essential data to justify the feasibility

of the post-stall flow control technique.

4.1. Effect of Forcing Frequency

We look at the effect of forcing frequency, with fixed a = 25 °. In this case we found

that

fOlaecI = 0.152fOlaear,

where f°hear is estimated at a point right downstream of the separation point.

Figure 5a gives a typical time variation of lift and drag coefficients for the unforced

flow. The corresponding power spectrum of C, is shown in fig. 5b, where the only peak
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is at Stshed, all other modes being not excited. A quasi-periodicity is clearly seen, mainly

modulated by the natural vortex shedding frequency. We define

oCtshed _-- fshedC sin a (7)
U

which for a = 25 ° was found to be 0.158. The time-averaged lift and drag coefficients are

1.017 and 0.543, respectively, both are higher than the classic experimental values 0.84

and 0.36 at the same Reynolds number (Critzos et al. 1955; Fig. 1). As mentioned before,

this discrepancy is due mainly to the use of algebraic turbulence model. Thus, the results

are of value mainly in the relative sense.

I Figure 5 here ]

The time-dependent Ct and Cd under forcing, as well as their power spectra, are shown

in Figs. 6 through 9. The time-averaged lift and drag are compared in Table 1, where the

amplitudes of C_ and Cd, in terms of root-square mean, are also listed. The following

effects of forcing frequency are then evident.

I Figures 6 - 9 here ]

A

First, the harmonic resonance with vortex shedding obviously happens at fe = 1.0 and

2.0. In both cases man?, harmonic modes of f0shed are excited. Consequently, we obtain the

most favorable increase of lift/drag ratio (49.2% and 46.7%, respectively). In particular, the

random high-frequency modes observed for unforced case are almost completely suppressed

when fe = 2fs0hed- implying a perfect frequency lock-in, which is the characteristics of

strongest resonance. This pattern must represent a well-organized vortical flow.

Second, the above two cases have very different amplitudes of Cl and Cd. While at

fe = 1.0 the amplitude is even larger than the unforced case, it is much smaller at fe = 2.0.

Figures 4a and 5a suggest that a dramatic change of the vortex shedding pattern takes

place as the forcing frequency is doubled: one large vortex is broken into two smaller

ones, which shed off at 2re. Therefore, a resonant state is not necessarily associated with

amplitude amplification. The same phenomenon has also been observed in circular-cylinder

flow control (Lu and Sato 1996). We shall return to this point as well as its relation with

the shear-layer evolution in § 5. In addition to a high lift/drag ratio, in practice the

amplitude of Ct and Cd should be as small as possible.

Thirdly, as jTe reduced to 0.5, we have subharmonic resonance with vortex shedding.

This leads to the largest lift increase (73.2 %) among all test cases, but the drag is also

increased by 23.6% (the total normal force is increased by 41.8%). ^Many subharmonic

modes are excited, but other modes are less suppressed compared to fe = 1 and 2. On the
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other hand, the largest drag reduction (5.5 %) occurs when fie = 4, but the lift increase

is small. Therefore, the optimal lift enhancement, drag reduction, lift/drag-ratio increase,

and amplitude alleviation, all occurred at different forcing frequencies. Note that some

results (e.g., optimal forcing frequencies) are fairly close to experimental data (e.g., Zhou

et al. 1993), though the airfoils are different.

4.2. Effect of Angle of Attack

At different angles of attack, similar pictures of C_ and Cd with various forcing fre-

quencies were obtained. But, it is sufficient here to give the time-averaged values of lift,

drag, and lift/drag ratio only. These are listed in Table 1, along with the relative ampli-

tudes of lift and drag. Figures 10, 11, and 12 roughly outline the range of angle of attack

for effective flow control: between 20 ° and 30 °. The strongest effect occurs at a = 20 °,

where the optimal enhancement of lift/drag ratio is as large as 57.7% at fe = 1.0. Inter-

estingly, this is also the frequency with almost perfect lock-in phenomenon, similar to the

case of a = 25 ° and fe = 2.0. For this angle of attack, additional computation was made

with _ = 1/3 and 1.5; but no qualitative change was observed.

Figures 10 - 12 here ]

The effect of unsteady control quickly drops to the level of 10% both as a decreases

only two degree below 20 °, and as a increases beyond 30 °. The physical reason for this

will be discussed later.

Figure 13 adds the lift benefit due to forcing to the unforced curve, Fig. 1. The figure

vividly indicates that the steep lift valley at static stall is largely fulfilled and further piled

up till a = 35 °. Only a narrow lift valley near astall --'_12 ° (for Rec = 5 x 105) remains,

which has a width of about 7 degrees. As noted before, this residual valley could be easily

eliminated by sweeping the wing.

Figure 13 here

4.3. Time-Averaged Flow Field

Having obtained positive result on the lift enhancement by post-stall flow control,

we now use the time-averaged flow-field behavior at a = 25 ° as an example to further

understand the effect of forcing.

Figures 14 through 18 give the averaged streamlines, vorticity contours, and pres-

sure distributions for different re. Because the averaged flow field includes the nonlinear

streaming effect (Wu at al. 1991), these patterns are not simply steady solutions of the
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Navier-Stokesequation. Nevertheless,from the time-averagedfield somebasicfeaturescan
be quickly identified.

l Figures 14 - 18 here I

For the unforced case, there is a lifting vortex above the airfoil, which is however

pushed up by its induced secondary separated vortex and a quite strong trailing vortex

that invades deeply upstream. These three vortices of alternative signs, plus the leading-

edge shear layer, are the basic constituents of the uncontrolled separated flow. The time-

averaged pressure distribution on the upper surface is basically a flatform, Cp -_ -1,

which confirms that the flow is indeed fully separated. Near the trailing edge there is a

vortex-induced low pressure region.

When forcing is imposed, except for _ = 4 which has the same qualitative feature

as unforced flow, the secondary separation is suppressed, and the mean trailing vortex is

confined in a much smaller region behind the tailing edge. Note that the two or three

leaves of the mean trailing-vorticity contours indicate that, before shedding off, the vortex

wonders around the edge and stays longer at these positions in a period. This situation

creates a much more comfortable circumstance for the main lifting vortex to be captured

closer to the wing, and hence produce a larger lift. It should be noticed that the captured

mean vortex is about as strong as that of the leading-edge vortex of a slender delta wing

at the same angle of attack: it induces a Cp -_ -2 beneath the vortex.

A comparison of Figs. 16b and 17b further reveals some interesting difference between

the two resonant states. When j_ = 2, the mean shear layer has very smooth contours.

It extends across the whole chord length, basically parallel to the free stream, and with

an almost constant mean thickness. The mean trailing vortex is thereby pushed more

downstream and confined in a even smaller region than that in Fig. 16b. Therefore, this

nearly perfect resonant state at )_ = 2 results in a narrower wake and smaller drag, as

well as a much smaller amplitude of Ct and Cd as observed above. However, since at this

forcing frequency the merging of leading-edge vortices into larger ones is blocked, the main

lifting vortex is not as strong as that at fe = 1.0. This explains the observed reduction of

lift enhancement at higher forcing frequencies.

Note that the mean-streamline patterns satisfy the topological rule for two-dimensional

cross-sectional flow (Hunt et al. 1978):

where N, N _, S, and S _ stands for node, semi-node, saddle, semi-saddle, respectively. In

Figs. 14a and 15a, we have _N = 3, _N' = 0, _S = 1, and _s' = 6; while in Figs. 16a,
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17a, and 18a, thesenumbers are 1, 0, 0, 4, respectively. It is well known that the fewer

the number of critical points is, the "healthier" would be the flow pattern -- it would be

more stable and easier to utilize. As conjectured by Wu and Wu (1992), the post-stall

resonance between leading-edge shear layer and trailing-edge vortices, triggered off by a

low-level forcing, precisely achieves such a goal.

4.4. Vorticity Field and Vortex Dynamics

In order to fully understand the specific fluid-dynamic mechanisms of post-stall flow

control, we now display typical instantaneous vorticity contours at a = 25 ° mad discuss

their implications.

Figure 19 shows a few typical evolution stages of vortex dynamic evolution in a period

for unforced flow. We see a strong, well rolled-up trailing vortex, secondary and tertiary

separated vortices from the mid portion of upper surface, and a short leading-edge shear

layer. Only the last one is favorable for lift, but after two to three small discrete vortices

(the location of their formation is random for unforced shear layer), the favorable vortex

is quite loose with low-level vorticity. Moreover, this weak vortex is raised up by the

unfavorable vortices. As the strong trailing vortex stays above the rear part of the airfoil,

the lift drops to the bottom; while as it sheds away, the lift climbs up. The zoom-out plot

containing a few pair of shed vortices shows that the wake consists of a KKrmg_n vortex

street with an increasing width, in which the vortices of opposite signs are staggered.

Figure 19 here ]

The forced flow at f_ = 1.0 is shown in Fig. 20. The leading-edge shear layer rolls into

a strong coherent favorable vortex nearer to the airfoil. In a smaller part of the period

the secondary vortex still has an effect, but weaker than unforced case. Meanwhile, the

shrinking and moving downstream of the trailing vortex before it sheds off are obvious. The

wake vortices are now aligned to almost a single array. Such a single vortex array behind

an oscillating airfoil has been observed by, e.g., Cornish (1983) and Koochesfahani (1989),

and in an acoustically excited circular-cylinder flow, by Detemple-Laake and Eckelmann

(1989). Note that the uneven spacing between the wake vortices makes them in such a

pair that a mutual induction creates an upwash. However, this does not imply a loss of

lift: for unsteady flow the force cannot be solely judged by the flow behavior over a control

surface in the wake. In the mean vorticity contours (Fig. 16a) the upwash disappears.

I Figure 20 here ]

Recalling the results of § 3, we may interpret the main vortex-dynamics mechanisms

that cause the difference between forced and unforced flow patterns as follows.
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First, the forcing with a low frequencysuchas

fe = fsOhed = 0"152fOhear

causes several small discrete vortices, formed from high-frequency shear-layer instability, to

quickly merge into a large vortex. In addition, in § 3.1.2 we mentioned that a forcing with

c v = 1% did not enhance the lift, i.e., the forcing strength must be above a certain level.

Therefore, we identify the vortex merging as a typical rolling-up coalescence addressed in

§ 2.2. From computed vorticity contours, a merging of three vortices can be recognized.

We mention that, compared to _ = 1.0, when jFe reduces to 0.5 the rolling-up coalescence

involves more vortices and produces a larger vortex with higher strength (not shown); thus

the maximal lift enhancement occurs at the low frequency end.

Second, since the main vortex has a rolling-in structure, when it is strong enough

it will have the ability of entraining most disordered fluid into its core. This seems to

be the fluid-dynamic mechanism of frequency lock-in for this special flow. Note that for

two-dimensional s_eady flow the rolling-in is impossible.

Third, the entrainment of strong lifting vortex is asymmetric on its upper and lower

sides. Due to the existence of airfoil surface, on its lower side not much fluid is entrained.

The main entrainment occurs on its upper side, where the fresh stream brings larger

momentum into the vortex, so the vortex has a tendency of turning downward. This is

a very favorable effect. Since most of disorganized secondary and tertiary separated flow

disappear, once saturated, the main vortex tends to be advected along the main stream

direction, closer to the airfoil surface than unforced case. Therefore, the upstream invading

of trailing vortices due to the induction as the main vortex travel above it, as in the unforced

case, is also greatly suppressed. The circulation around the airfoil is thus more favorable.

With the above explanation, the flow patterns under other flow and forcing parameters

can also be better understood. For example, as fe increased to 2.0 (Fig. 21), the size and

strength of both lifting vortex and trailing vortices are reduced. It seems that the forcing

at this fe can take very good care of both high-frequency shear layer and low-frequency

shedding. Two lifting vortices with nice circular shape now coexist above the wing, and

the unfavorable interference of the trailing vortex is further limited. The wake vortices

also remarkably align to a single array with even spacing (hence no upwash). The doubling

of forcing frequency implies that the rolling-up coalescence occurs at a smaller scale than

before, and so is the trailing vortex formation. Therefore, the wake width is narrower.

This further explains why the amplitude of Cz and Ca is greatly reduced.

Figure 21 here ]

The favorable effect of forcing declines as _ further increases to 4.0 (Fig. 22), where

fe/f° - 0.606, which is of order one. Thus, as explained by Ho and Nosseirwe have j, / shear --
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(1981), the shear layer is simply discretized to a series of traveling vortices but no rolling-

up coalescence happens. Note that, in contrast to the case of ._ = 2.0, while the number

of leading-edge vortices is doubled and their strength is halved, now the trailing vortex

is not. Meanwhile, the small traveling vortices are not strong enough to entrain most of

disorganized fluid. Consequently, the response shedding frequency no longer follows re,

and the irregular secondary and tertiary separation reoccur. As a result, the drag is still

reducing but the lift enhancement is small.

Figure 22 here ]

We stress that the first and second mechanisms, i.e., the rolling-up coalescence and

strong entrainment, are both necessary. Even if the coalescence appears, the vortex formed

thereby may be too far from the airfoil surface so that it cannot entrain most disorganized

fluid. In this case the flow field will still behave like an unforced flow. This indeed happens

at a = 30 ° (not shown). The strong remaining disorganized flow will reversely make the

coalescence process aperiodic. This is the main reason for the observed much smaller lift

enhancement.

4.5. Necessary Conditions for Post-Stall Lift Enhancement

Based on the above results, we may summarize the physical mechanisms of lift en-

hancement at post-stall angles of attack by unsteady control as follows: a proper forcing

locks the instability frequencies of leading-edge shear layer and trailing vortices at a fre-

quency equal to the harmonics and subharmonics of the forcing frequency. The result of

resonance includes: the suppression of secondary and tertiary separations; the modulation

of shear-layer evolution, entrainment, and its moving downward; and the shrinking and

downstream shifting of trailing vortices. Consequently, a lifting vortex is captured in time-

average sense, and the uncontrolled random separated flow becomes well organized. The

three elements, i.e., the leading-edge shear layer, trailing vortices, and the airfoil, form a

resonance cavity under a low-level forcing.

Based on this understanding, therefore, the following two basic conditions for post-

stall lift enhancement are necessary:

(1) The co-existence of a well-developed free shear layer and trailing vortices.

(2) A well shaped "resonant cavity" enclosed by leading shear layer, trailing vortices, and

upper surface of the wing.

In the first condition, the shear layer must be free enough to undergo the local in-

stability, discretization, pairing, and rolling-up coalescence. Only in this case can these

processes be effectively modulated by forcing. For _ too close to ast_l, the shear layer is
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too close to the surface (as observed at a = 18°; the figure is not shown) and loses part of

its freedom of being modulated. Thus, the forcing effect reduces.

In the second condition, the "resonant cavity", now bounded by deformable fluid and

has different boundary conditions as a solid-bounded cavity, cannot be too large. For

otherwise the intrinsic communication between the shear layer and trailing vortices will be

too weak. This happens for a _> 35 °, and explains why the forcing effect is declined at a

too large angle of attack. Moreover, this condition also emphasizes the importance of the

airfoil shape.

15. Concluding Remarks

The present study provides an unambiguous numerical evidence to the post-stall lift

enhancement. Along with existing experimental results, it can be asserted with confidence

that the effect does exist and could be very beneficial.

The physics behind the post-stall lift enhancement proposed by Wu et al. (1991) is

further identified. The shear-layer instability and receptivity are the key to an effective

unsteady control, and the resonance between leading and trailing vortices with frequency

locked into the harmonics of forcing frequency is the main mechanism that leads to a

favorable flow pattern. In average, the secondary separation is suppressed, and the trailing

vortex is confined to downstream of the airfoil. Therefore, the lift is increased (never

decreased as noticed in experiments). If the forcing is at a harmonic of shedding frequency,

the drag, as well as the amplitudes of oscillating lift and drag, can be reduced.

As mentioned in the Introduction, the post-stall lift enhancement by unsteady control,

as numerically confirmed and physically understood by our two-dimensional study, can be

further improved by sweeping the wing. Then a monotonic increase of lift is possible for

the whole range of 0 ° _< a _< am, such that one can enjoy a new freedom to use the

vortical lift on a wing at a very high angle of attack, with the flow being completely

separated. The post-stall control greatly enhances such a vortical lift, i.e., more favorable

deviation from (2a). From the practical point of view, in order to reach this goal, more

works need to be down in the future. For example, more complex turbulence models

could be used to include the spanwise perturbation and correlation while the basic flow is

still two-dimensional; the Reynolds number could be increased in both experimental and

numerical studies; the sweeping effect and the fully three-dimensional configuration should

be examined; and finally, the optimal wing configuration as well as other factors affecting

the control (as stated in § 2.3) should be investigated. Some of these works are being

undertaken.

It must be stressed again that our numerical results are merely preliminary. Except

for the necessity of extending the computation to more realistic three-dimensional config-

urations and higher Reynolds numbers, as a two-dimensional computation, the results still

suffer from some shortages.
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First, The entire flow field was assumedturbulent, which was then accounted for by
a simple two-dimensional algebraic model. Thus, the important effect of transition to
turbulence and three-dimensionalturbulence werefar from fully explored.

Second,the Reynolds-numbereffectwasnot systematically studied. This brings some
further uncertain factors in judging the valueof our results,due to the possibleexistenceof
a critical regime. While wehave no idea on when this regimewill appear for the post-stall
airfoil flow, somepreliminary signsindicate that it may be quite closeto Rec = 5 x 105.

Except the example given by Rumsey et al. (1987), our own insufficient tests with an

one-equation turbulence model also showed a steady asymptotic behavior of lift and drag

is possible in some nearby Reynolds numbers and angles of attack. Note that so far no

turbulence model has been developed and fully tested specifically for unsteady separated

flows including transition. In our case, it would not be surprising if different existing models

predict different lower and upper bounds of Reynolds number for the critical regime.

Obviously, these two problems are closely related. They should be fully addressed

in our future work. However, the critical regime without vortex shedding is nevertheless

a special situation compared to the much wider range of practical Reynolds numbers

(106 --- 108), and in most cases the unsteady shedding and control are much more generic.

To conclude this report, we briefly consider the specific circumstances where the post-

stall flow control technique is very useful.

As said before, from the viewpoint of aerodynamic efficiency (the cruise condition),

the optimal use of vortical lift is in the regime of attached flow. Any flow control cannot

change this basic fact. However, the ,t_eady det_ached-vortez flow has been widely used

on slender wings or leading-edge extensions, mainly for maneuvering. This is the second

generation of flow type in aeronautics, and has greatly enlarged the range of usable angles

of attack for proper configurations. Now we are facing the third generation of flow type,

which is unsteady and could be used at an even larger range of angles of attack, as long

as the low drag is not a key issue to address. In practice, this happens at least in the

following cases:

(1) Landing of aircraft with flap deployed;

(2) Highly maneuvering flight.

In the first case, the technique can be applied to a flap. The increased drag on flap at

post-stall angle of attack is only a small portion of the aircraft drag, which is beneficial in

landing. The use of post-stall control would reduce the flap size and weight by enlarging

its usable angle of attack. In the second case, the drag increase is not a problem (even a

favorable effect.) and the technique could be used on the main wing: we believe that the

technique of post-stall lift enhancement by unsteady control can well be applied not only

large-aspect-ratio wings, but also slender wings.

- 20 -



References

Baldwin, B.S. and Lomax, H. 1978. Thin layer approximation and algebraic model for

separated turbulent flows. AIAA 78-_5Z

Batchelor, G.K. 1956. Unsteady laminar flow with closed streamlines at large Reynolds

number. J. Fluid Mech. 1,177-190.

Betz, A. 1950. Wie entsteht ein Wirbel in einer wenig z_i_hen Flfissigkeit? Naturwissen.

37, 193-196.

Chang, R.C., Hsiao, F.-B., and Shyu, R.-N. 1992. Forcing level effects of internal acoustic

excitation on the improvement of airfoil performance. J. Aircraft 29, 823-

829.

Chernyshenko, S.I. 1995. Stabilization of trapped vortices by alternating blowing-suction.

Phys. Fluids 7, 802-807.

Collins, F.G. and Zelenevitz, J. 1975. Influence of sound upon separated flow over wings.

AIAA J. 13,408-410.

Critzos, C.C., Heyson, H.H., and Boswinkle, R.W. 1955. Aerodynamic characteristics of

NACA 0012 airfoil section at angles of attack from 0 ° to 360 °. NA CA TN

3361.

Fage, A. and Johasen, F.C. 1927. On the flow of air behind an inclined fiat plate of infinite

span. Proc. Roy. Soc. Lond. Al16, 170-197.

G/Sven, O., Farell, C., and Patel, V.C. 1980. Surface-roughness effects on the mean flow

past circular cylinders. J. Fluid Mech. 98,673-701.

Ho, C.-M. and Huang, L.-S. 1982. Subharmonics and vortex merging in mixing layers. J.

Fluid Mech. 119,443-473.

Ho. C.-._'I. and Huerre, P. 1984. Perturbed free shear layers. Ann. Rev. Fluid Mech. 16,

365-424.

Ho, C.-M. and Nosseir, N.S. 1981. Dynamics of an impinging jet. Part I. The feedback

phenomenon. J. Fluid Mech. 105, 119-142.

Hsiao, F.-B., Liu, C.-F., and Shyu, J.-Y. 1990. Control of wall-separated flow by internal

acoustic excitation. AIAA J. 28, 1440-1446.

Hsiao, F.-B., Wang, T.-Z., and Zohar, Y. 1993. Flow separation control of a 2-D airfoil

by a leading-edge oscillating flap. Intern. Conf. Aerospace Sci. Tech., Dec.

6-9, 1993, Tainan, Taiwan.

Hsiao, F.-B., Shyu, R.-N., and Chang, R.C. 1994. High angle-of-attack airfoil performance

improvement by internal acoustic excitation. AIAA J. 32,655-657.

- 21 -



Huerre, P. and Monkewitz, P.A. 1990.Local and global instabilities in spatially developing
flows. Ann. Rev. Fluid Mech. 22,473-537.

Hunt, J.C.R., Abell, C.J., Peterla, J.A., and Woo, H. 1978.

flows around free or surface mounted obstacles:

visualization. J. Fluid Mech. 86, 179-200.

Kinematical studies of the

applying topology to flow

Jones, G.W. Jr., Cincotta, J.J., and Walker, W.W. 1969. Aerodynamic forces on a sta-

tionary and oscillating circular cylinder at high Reynolds numbers. NASA

TR R-300.

Ko, S. and McCroskey, W.J. 1995. Computations of unsteady separating flows over an

oscillating airfoil. AIAA 95-0312.

Lamb, H. 1932. Hydrodynamics. Cambridge University Press.

Launder, B.E. and Sharma, B.I. 1974. Application of the energy-dissipation model of

turbulence to the calculation of flow near a spinning disc. £ett. Heat Mas_

Tran_fer 1,131-138.

Oertel, H. Jr. 1990. Wake behind bunt bodies. Annu. Rev. Fluid Mech. 22,539-564.

Patel, V.P., Rodi, W. and Scheuerer, G. 1985. Turbulence models for near-wall and low

Reynolds number flows: A review. AIAA J. 23, 1308-1319.

Rockwell, D.O. 1972. External excitation of plan jets. Trans. ASME E: J. Appl. Mech.

39. 883-890.

Rockwelh D. 1990. Active control of globally-unstable separated flows. Intern. Syrup.

Nonsteady Fluid Dynamics, June 4-7, 1990, Ontario, Canada. J.A. Miller

and D.P. Telionis eds., ASME_ pp. 379-394.

Roshko, A. 1954a. A new hodograph for free-streamline theory. NACA TN 3168.

Roshko, A. 1954b. On the drag and shedding frequency of two-dimensional bluff bodies.

NA CA TN 3169.

Roshko, A. 1961. Experiments on the flow past a circular cylinder at very high Reynolds

number, i. Fluid Mech. 10, 345-356.

Seifert, A., Bachar, T., Koss, D., Shepshelovich, M., and Wygnanski, I. 1993. Oscillatory

blowing: a tool to delay boundary-layer separation. AIAA J. 31, 2052-2060.

Spalart, P.R. and Allmaras, S.R. 1992. A one-equation turbulence model for aerodynamic

flows. AIAA 9_-0_39.

Stansby, P.K. 1976. The lock-on of vortex shedding due to the cross-stream vibration of

circular cylinders in uniform and shear flows. &Fluid Mech. 74,641-665.

- 22 -



Thompson, K.W. 1990. Time-dependentboundary conditions for hyperbolic systems, II.

d. Comput. Phys. 89, 439-461.

Unal, M.F. and Rockwell, D. 1988. On vortex formation from a cylinder. Part I. The

initial instability. J. Fluid Mech. 190, 491-512.

Wick, B.H. 1954. Study of the subsonic forces and moments on an inclined plate of infinite

span. NACA TN 3221.

Williamson, C.H.K. 1996. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech.

28, 477-539.

Wu, J.M. and V_Tu, J.Z. 1992. Vortex lift at a very high angle of attack with massively

separated unsteady flow. IUTAM Syrap. Fluid Dynamics of High Angle of

Atiack, Sept. 13-17, 1992, Tokyo, Japan. Also: R. Kawamura and Aihara

(eds.), Fluid Dynamics of High Angle of A_ack, 1993, Springer-Verlag, 35-63.

Wu, J.Z. and Wu. J.M. 1996. Vorticity dynamics on boundaries. Adv. Appl. Mech. 32,

J.W. Hutchinson and T.Y. Wu (eds.), Academic Press, 119-275.

Wu, J.Z., Vakili, A.D., and Wu, J.M. 1991. Review of the physics of enhancing vortex

lift by unsteady excitation. Prog. Aerospace Sci. 28, ed. by A.D. Young,

Pergamon Press, 73-131.

Zhou, M.D., Fernholz, H.H., Ma, H.Y., Wu, J.Z., and Wu, J.M. 1993. Vortex capture by

a two-dimensional airfoil with a small oscillating leading-edge flap. AIAA

93-3266.

- 23 -



Table 1

Time-Averaged Effect of Forcing at Different Frequencies and Angles of Attack

CI - averaged lift, coefficient

Cd - averaged drag coefficient

Clrm._ - r.m.s, value of lift coefficient

Cd,:,.,_ - r.m.s, value of drag coefficient

(a) a = 18 °

C__._l/ C__d _ Benefit L/D_ _

0.0 0,9SS 0.261 3.785 0.073 0.017

0.5 0.952 0.227 4.194 I0.81 0.149 0.042

1.0 0.891 0.223 4.005 5.81 0.125 0.059

2.0 0.9S7 0.233 4.236 11.92 0.084 0.035

4.0 1.003 0.23S 4.214 11.33 0.085 0.026

8.0 0.9S9 0.242 4.087 7.97 0.091 0.028

(b) a-- 20 °

C'___: C'____: LAP_ Benefit I. I D_ C ZC.h_

0.0 0.9cos 0.355 2.495 0.194 0.052

1/3 1,370 0.419 3.269 31.0 0.312 0.171

0.5 1.395 0.397 3.534 40.8 0,294 0.149

1.0 1,275 0.324 3.935 57.7 0.134 0.077

1.5 1,042 0.296 3.520 41.1 0.120 0.075

2.0 1.003 0.306 3.278 31.4 0.130 0.057

4.0 1.066 0.33S 3.154 26.4 0.116 0.048
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(c) a -- 25 °

£
0.0

0.5

1.0

2.0

4.0

C1

1.017

1.761

1.540

1.382

1.187

cd

0.543

0.671

0.551

0.503

0.488

1.873

2.624

2.795

2.748

2.432

Benefit L/D%

40.1

49.2

46.7

29.8

0.295

0.256

0.302

0.120

0.150

Cd_A_
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Figure 1. Lift coefficient Ct of NACA-0012 airfoil. From the experiments of Critzos et

al. (1955), Be = 5 × 105. Also shown (dash line) is a simple estimate for the post-stall

Ct by Eq. (2a).
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Figure 2. Variation of normalized amplification rate of perturbed shear layers with

Strouhal number fO/-ff. From Ho and Huerre (1984). Lines are results of linear

stability theory and symbols from experiments, for different values of R = (U1 -

u2)/(2u).
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Figure 3. Variation of normalized phase velocity of perturbed shear layers with St.

From Ho and Huerre (1984). Lines are results of linear stability theory and symbols

from experiments_ for different values of R = (U1 - U2)/(2U).
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Figure 5. Computed unsteady force character of NACA-0012 airfoil. Uncontrolled
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this and following figures are scaled by U_ and chord-length c. (a) instantaneous lift

and drag coefficients. (b) Power spectral density of Ci.
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Figure 6. Unsteady force character of NACA-0012 airfoil. ]e = 0.5, c_ = 2.5%.

(a) instantaneous lift and drag coefficients. (b) Power spectral density of Ct. Flow
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Figure 7. The same as Fig. 6; but j_ = 1.0.



2.5 I CLCD
2.0

1.5

CL

CD 1.0

II1_ lU| Illlj IIII

0.5

0.0
0 20 40 60 80 100 120 140 160

I0° _-

10_

_.1
O

"5 0.2E 1
2

ea

$ 10 "a
o

10 "4

10 s
0

, , , , l i i i i l , , , , I i , i i I I i i 'J

1 2 3 4 5

f

Figure 8. The sazne as Fig. 6; but )Te = 2.0.



1.5

CL

CD 1.o

0.0

0

CL
CD

20 40 60 80 100 120 140 160

100

10 "1I

10 .2

103
Q.

10 "4

10 s
0

' ' ' I I I , , , I _ , , , I , , , I I I I , I

1 2 3 4 5

f.

Figure 9. The same as Fig. 6; but )_ = 4.0.



C_ r__ _.,T_.O 0 "" ............ .),

J_ ..... F._.O '_ ,'" ""=.,. ...

_.......... V%'_o ..."" "_":.-..............
• | ............ f._,.,._.2o ..,"" •............ ", ""'-.,.

• s. _ ..." •

I j i'" *"" _'

1 4 I s ..-

I f ."

s I" ,,'

t i ,I :*

; r _ ,,'

I t' .,"

I I" ,,'

12 f t ,'

i i o"

t / :'"

t / ,,"

I .t J

10

Q
20 25 30 35

Figure 10. Controlled and uncontrolled averaged lift coefficients of NACA-0012 airfoil

at different post-stall angles of attack.
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Figure 11. Controlled and uncontrolled averaged drag coet_cients of NACA-0012

airfoil at different post-stall angles of attack.
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Figure 12. Controlled and uncontrolled averaged lift/drag ratio of NACA-0012 airfoil

at different post-stall angles of attack.
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Figure 13. Overall view of the mean lift coefficient increase due to forcing.
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Figure 14. Time-averaged Streamlines (a), vorticity contours (b), and pressure coef-

ficient (c) of NACA-0012 airfoil. The flow conditions are the same as that of Fig. 5.
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Figure 15. Time-averaged Streamlines (a), vorticity contours (b), and pressure coef-

ficient (c) of NACA-0012 airfoil. The flow conditions are the same as that of Fig. 6.
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Figure 16. Time-averaged Streamlines (a), vorticity contours (b), and pressure coef-

ficient (c) of NACA-0012 airfoil. The flow conditions are the same as that of Fig. 7.
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Figure 17. Time-averaged Streamlines (a), vorticity contours (b), and pressure coef-

ficient (c) of NACA-0012 airfoil. The flow conditions are the same as that of Fig. 8.
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Figure 18. Time-averaged Streamlines (a), vorticity contours (b), and pressure coef-

ficient (c) of NACA-0012 airfoil. The flow conditions axe the same as that of Fig. 9.
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Figure 19. Instantaneous vorticity contours of NACA-0012 airfoil. Unforced flow, the

same condition as Fig. 5. t = 113.07 (a); 113.77 (b); 114.47 (c); 115.17 (d); 115.87

(e); 116.58 (f); 117.28 (g); 117.98 (h); 118.68 (i); 119.38 (j).
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Figure 19 (continued)
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Figure 20. Instantaneous vorticity contours of NACA-0012 airfoil. Forced flow, the

same condition as Fig. 7.._ = 1.0. _ = 135.59 (a); 136.29 (b); 136.99 (c); 187.69 (d);

13S.39 (e) 139.09 (f); 139.79 (g); 140.49 (h); 141.19 (i); 141.89 (j).
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Figure 20 (continued)
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Figure 21. Instantaneous vorticity contours of NACA-0012 airfoil. Forced flow, the

same condition as Fig. 8.._ = 2.0. t = 1.35.55 (a); 135.89 (b); 136.23 (e); 136.57 (d);

136.91 (e); 137.24 (f); 137.5S (g); 137.92 (h); 138.26 (i); 138.60 (j).
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Figure 21 (continued)



-' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' '-

I1[I ¸

-' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' '-

C_) (h)

(i) (j)

Figure 22. Instantaneous vorticity contours of NACA-0012 airfoil. Forced flow, the

same condition as Fig. 9.._ = 4.0. _' = 135.65 (a); 135.99 (b); 136.33 (c); 136.67 (d);

137.00 (e); 137.34 (f); 137.68 (g): 138.02 (h); 138.36 (i); 138.70 (j).
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Figure 22 (continued)


